Skip to Main Content

Undersea and Hyperbaric Medicine : 2022-2023 Publications

*Note: Publications are first categorized by subject term then by date.

Decompression Sickness

Currens, J., Dayton, P.A., Buzzacott, P., et al. (2022). Hyperbaric exposure in rodents with non-invasive imaging assessment of decompression bubbles: A scoping review protocol. PLoS ONE, 17(9), e0274241. https://doi.org/10.1371/journal.pone.0274241 

 

Electrochemistry

Mitchell, J.B., Chen, L., Langworthy, K., Fabrizio, K., & Boettcher, S.W. (2022, November 11). Catalytic Proton–Hydroxide Recombination for Forward-Bias Bipolar Membranes. ACS Energy Letters, 7(11), 3967-3973. https://doi.org/10.1021/acsenergylett.2c02043 

Jin, S., Chen, P.Y., Qiu, Y., et al. (2022, October 26). Zwitterionic Polymer Gradient Interphases for Reversible Zinc Electrochemistry in Aqueous Alkaline Electrolytes. Journal of the American Chemical Society, 144(42), 19344-19352. https://doi.org/10.1021/jacs.2c06757 

Cheng, Q., Jin, T., Miao, Y., et al. (2022, October). Stabilizing lithium plating in polymer electrolytes by concentration-polarization-induced phase transformation. Joule, 6(10), 2372-2389. https://doi.org/10.1016/j.joule.2022.08.001 

Xie, K., Miao, R.K., Ozden, A., et al. (2022, June 24). Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nature Communications, 13(1), 1-12. https://doi.org/10.1038/s41467-022-31295-3 

Garell, M., Abbaszadeh, M., & Hatzell, M.C. (2022, June 1). Application of Reverse Electrodialysis Power for Oxygen Generation in Undersea Diving. Journal of The Electrochemical Society, 169(6), 64507. https://doi.org/10.1149/1945-7111/ac6c0f 

Veroneau, S.S., Hartnett, A.C., Thorarinsdottir, A.E., & Nocera, D.G. (2022, February 28). Direct Seawater Splitting by Forward Osmosis Coupled to Water Electrolysis. ACS Applied Energy Materials, 5(2), 1403-1408. https://doi.org/10.1021/acsaem.1c03998 

 

 

Gas Physiology

Erdosy, D.P., Wenny, M.B., Cho, J., et al. (2022, August 25). Microporous water with high gas solubilities. Nature, 608(7924), 712-718. https://doi.org/10.1038/s41586-022-05029-w 

Balestra, C., Arya, A.K., Leveque, C., et al. (2022, July 17). Varying Oxygen Partial Pressure Elicits Blood-Borne Microparticles Expressing Different Cell-Specific Proteins—Toward a Targeted Use of Oxygen?. International Journal of Molecular Sciences, 23(14), 7888. https://doi.org/10.3390/ijms23147888 

Wenny, M.B., Molinari, N., Slavney, A.H., et al. (2022, February 17). Understanding Relationships between Free Volume and Oxygen Absorption in Ionic Liquids. The journal of physical chemistry. B, 126(6), 1268-1274. https://doi.org/10.1021/acs.jpcb.2c00202 

Human Performance

Abbaszadeh, M., Garell, M., Choi, J.I., et al. (2023, February 6). Unraveling Water and Salt Transport in Polyamide with Nuclear Magnetic Resonance Spectroscopy. ACS Materials Letters, 5(2), 291-298. https://doi.org/10.1021/acsmaterialslett.2c00932 

Keeler, J.M., Hess, H.W., Tourula, E., et al. (2022, November 1). Increased spleen volume provoked by temperate head-out-of-water immersion. American journal of physiology. Regulatory, integrative and comparative physiology, 323(5), R776-R786. https://doi.org/10.1152/ajpregu.00111.2022 

Ferreira, F., Kvasić, I., Nađ, Đ., et al. (2022, October 14). Diver‐Robot Communication Using Wearable Sensing: Remote Pool Experiments. Marine Technology Society Journal, 56(5), 26-35. https://doi.org/10.4031/MTSJ.56.5.5 

Wang, M., Yang, Y., Min, J., et al. (2022, August 15). A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nature biomedical engineering, 6(11), 1225-1235. https://doi.org/10.1038/s41551-022-00916-z 

McCune, E. P., Le, D. Q., Lindholm, P., et al. (2022, June 30). Perspective on ultrasound bioeffects and possible implications for continuous post-dive monitoring safety. Diving and hyperbaric medicine, 52(2), 136–148. https://doi.org/10.28920/dhm52.2.136-148 

Yu, Y., Li, J., Solomon, S.A., et al. (2022, June 1). All-printed soft human-machine interface for robotic physicochemical sensing. Science robotics, 7(67).  https://doi.org/10.1126/scirobotics.abn0495 

Batzner, S., Musaelian, A., Sun, L., et al. (2022, May 4). E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nature Communications, 13(1), 1-11. https://doi.org/10.1038/s41467-022-29939-5 

Bystrom, K., & Kozinsky, B. (2022, April 12). CIDER: An Expressive, Nonlocal Feature Set for Machine Learning Density Functionals with Exact Constraints. Journal of chemical theory and computation, 18(4), 2180-2192. https://doi.org/10.1021/acs.jctc.1c00904 

 

 

Marine Mammal Biology

Sportelli, J.J., Jones, B.L., & Ridgway, S.H. (2023, May 4). Non-linear phenomena: A common acoustic feature of bottlenose dolphin ( Tursiops truncatus ) signature whistles . Bioacoustics, 32(3), 241-260. https://doi.org/10.1080/09524622.2022.2106306 

Jones, B., Tufano, S., & Ridgway, S. (2022, August). Signature whistles exhibit a ‘fade-in’ and then ‘fade-out’ pattern of relative amplitude declination. Behavioural Processes, 200, 104690. https://doi.org/10.1016/j.beproc.2022.104690 

Materials Science

d'Amone, L., Trivedi, V.D., Nair, N.U., & Omenetto, F.G. (2022, December 5). A Silk-Based Platform to Stabilize Phenylalanine Ammonia-lyase for Orally Administered Enzyme Replacement Therapy. Molecular pharmaceutics, 19(12), 4625-4630. https://doi.org/10.1021/acs.molpharmaceut.2c00512 

Lee, H., Chi, W.S., Lee, M.J., et al. (2022, November). Network‐Nanostructured ZIF‐8 to Enable Percolation for Enhanced Gas Transport. Advanced Functional Materials, 32(47), 2207775-n/a. https://doi.org/10.1002/adfm.202207775 

Sun, R., Liu, M., Wang, P., Qin, Y., et al. (2022, August 8). Syntheses and Properties of Metalated Tetradehydrocorrins. Inorganic chemistry, 61(31), 12308-12317. https://doi.org/10.1021/acs.inorgchem.2c01642 

Chen, L., Xu, Q., Oener, S.Z., Fabrizio, K., & Boettcher, S.W. (2022, July 4). Design principles for water dissociation catalysts in high-performance bipolar membranes. Nature Communications, 13(1), 1-10. https://doi.org/10.1038/s41467-022-31429-7 

Wang, Y., Kim, B.J., Guidetti, G., & Omenetto, F.G. (2022, June 2). Generation of Complex Tunable Multispectral Signatures with Reconfigurable Protein‐Based, Plasmonic‐Photonic Crystal Hybrid Nanostructures. Small, 18(22), e2201036. https://doi.org/10.1002/smll.202201036 

Khlyustova, A., Kirsch, M., Ma, X., et al. (2022, April 6). Surfaces with antifouling-antimicrobial dual function via immobilization of lysozyme on zwitterionic polymer thin films. Journal of materials chemistry. B, 10(14), 2728-2739. https://doi.org/10.1039/d1tb02597j 

Guidetti, G., d'Amone, L., Kim, T., et al. (2022, January 4). Silk materials at the convergence of science, sustainability, healthcare, and technology. Applied Physics Reviews, 9(1), 011302. https://doi.org/10.1063/5.0060344 

 

 

Microbiology

Moon, T.S., & Louis, W.U.S.M.(.S. (2022, December). SynMADE: Synthetic microbiota across diverse ecosystems. Trends in biotechnology, 40(12), 1405-1414. https://doi.org/10.1016/j.tibtech.2022.08.010 

Wang, H., Liu, Z.L., Lao, J., Zhang, S., Abzalimov, R., Wang, T., & Chen, X. (2022, May). High Energy and Power Density Peptidoglycan Muscles through Super‐Viscous Nanoconfined Water. Advanced Science, 9(15), e2104697-n/a. https://doi.org/10.1002/advs.202104697 

Chen, P., Lang, J., Zhou, Y., et al. (2022, January 14). An imidazolium-based zwitterionic polymer for antiviral and antibacterial dual functional coatings. Science advances, 8(2), eabl8812. https://doi.org/10.1126/sciadv.abl8812 

Chen, P., Lang, J., Zhou, Y., et al. (2022, January 14). An imidazolium-based zwitterionic polymer for antiviral and antibacterial dual functional coatings. Science advances, 8(2), eabl8812. https://doi.org/10.1126/sciadv.abl8812 

Miscellaneous (Uncategorized Physiology, Medical, Cell Biology)

Green, A., Hossain, T., Eckmann, D.M., & Eckmann, D.M. (2022, October 19). Mitochondrial dynamics involves molecular and mechanical events in motility, fusion and fission. Frontiers in Cell and Developmental Biology, 10, 1010232. https://doi.org/10.3389/fcell.2022.1010232 

Malingen, S.A., & Rangamani, P. (2022, September). Modelling membrane curvature generation using mechanics and machine learning. Journal of the Royal Society, Interface, 19(194), 20220448. https://doi.org/10.1098/rsif.2022.0448 

Margolis, D.J., Mitra, N., Malay, D.S., et al. (2022, July). Further evidence that wound size and duration are strong prognostic markers of diabetic foot ulcer healing. Wound Repair and Regeneration, 30(4), 487-490. https://doi.org/10.1111/wrr.13019 

Heng, W., Solomon, S., & Gao, W. (2022, April). Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. Advanced materials (Deerfield Beach, Fla.), 34(16), e2107902-n/a. https://doi.org/10.1002/adma.202107902 

Porras-Gómez, M., Shoaib, T., Steer, D., Espinosa-Marzal, R.M., & Leal, C. (2022, March 15). Pathological cardiolipin-promoted membrane hemifusion stiffens pulmonary surfactant membranes. Biophysical Journal, 121(6), 886-896. https://doi.org/10.1016/j.bpj.2022.02.018 

Zhu, C., Lee, C.T., & Rangamani, P. (2022, February 11). Mem3DG: Modeling membrane mechanochemical dynamics in 3D using discrete differential geometry. Biophysical Journal, 121(3), 71a. https://doi.org/10.1016/j.bpj.2021.11.2371 

Oxygen Toxicity

Dean, J.B., & Stavitzski, N.M. (2022, July 26). The O2-sensitive brain stem, hyperoxic hyperventilation, and CNS oxygen toxicity. Frontiers in Physiology, 13, 921470. https://doi.org/10.3389/fphys.2022.921470